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In this lecture, we derive the stochastic version of the Linear Quadratic Regulator (LQR). Then,
we will talk about the controllability and observability Gramians.

1 Stochastic LQR

The model is similar to the one used with LQR, except we now have process noise.

xt+1 = Axt +But + wt, (1)

The noise wt is normally distributed with mean zero and variance:

wt ∼ N (0,Σw)

With wt, the state xt becomes a random variable. Consequently, the standard quadratic cost used
for deterministic LQR becomes a random variable. In order for this problem to make sense, the
cost must be deterministic. The standard way to achieve this is to consider the expected cost. To
this end, we define

J = minimize
u0,...,uN−1

E

[
N−1∑
t=0

(xT
t Qxt + uT

t Rut) + xT
NQfxN

]
(2)

is also random. In order for this optimization to make sense, we need to make the cost function
non-random. The standard way to do this is using expectation. So we will define

We will use dynamic programming like we did with deterministic LQR, but this will require a
modified value function and a new version of the recursion we used in the deterministic case. We
define the value function as:

Vt(z) := minimize
ut,...,uN−1

E

[
N−1∑
k=t

(xT
t Qxt + uT

t Rut) + xT
NQfxN

∣∣∣∣∣ xt = z

]
(3)

The modified recursion is

Vt(z) = min
u

(
zTQz + uTRu+EVt+1(Az +Bu+ wt)

)
(4)

Note the expectation inside the minimization. This expectation is taken with respect to the random
variable wt. Eq. (4) is called the principle of optimality.

We cannot prove (4) using the same approach as we did in the deterministic case, because the
expectation makes things more complicated. Specifically, we would have to exchange the order of
minimization and expectation, which, in general, is not possible. For more details on how to prove
the principle of optimality, please see the supplementary notes.
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2 Optimal Solution for Stochastic LQR

We are going to use the same approach of last time. The difference this time is that the value
function will be quadratic-plus-constant rather than being a pure quadratic. In other words, we will
prove that Vt(z) = zTPtz + rt. At the terminal timestep, we have

PN = Qf and rN = 0.

We use induction to prove that Vt has the required form. It holds for N , so assume it holds for t+1
and we will show that it holds for t. Substitute the formula for Vt+1 into (4) and obtain

Vt(z) = min
u

(
zTQz + uTRu+Ew

[
(Az +Bu+ w)TPt+1(Az +Bu+ w) + rt+1

])
= min

u

(
zTQz + uTRu+ (Az +Bu)TPt+1(Az +Bu) + tr(Pt+1Σw) + rt+1

)
= min

u

[
z
u

]T [
ATPt+1A+Q ATPt+1B
BTPt+1A BTPt+1B +R

] [
z
u

]
︸ ︷︷ ︸

same as deterministic LQR

+ tr(Pt+1Σw) + rt+1︸ ︷︷ ︸
constant term

Therefore, we can write that Vt(z) = zTPtz + rt, with:

PN = Qf

Pt = ATPt+1A+Q−ATPt+1B(BTPt+1B +R)−1BTPt+1A

rN = 0

rt = tr(Pt+1Σw) + rt+1

Kt = −(BTPt+1B +R)−1BTPt+1A

So the optimal policy for stochastic LQR is ut = Ktxt, where Kt is the same LQR gain as in the
deterministic LQR case.

The total cost using the optimal policy is:

V0(x0) = xT
0P0x0 + r0

= xT
0P0x0 +

N∑
t=1

tr(PtΣw)

The cost of deterministic LQR is simply xT
0P0x0. In stochastic LQR, there is an additional cost

given by the sum of tr(PtΣw) terms, which is due to the process noise.

Note that if x0 is also random, say x0 ∼ N (µx,Σx), then we would instead obtain:

V0(x0) = E(xT
0P0x0) + r0

= µT
xP0µx + tr(P0Σw) +

N∑
t=1

tr(PtΣw)
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In stochastic LQR, we do not have xt → 0. The process noise added at every timestep causes
the state to meander about zero, and it never quite settles down. This is why the cost has this
ever-accumulating term that will go to infinity as N grows large. For this reason, it does not make
sense to talk about the “steady-state” or “infinite-horizon” cost.

As the horizon goes to infinity, so does the cost. However, we can talk about average cost. This is
found by taking the average and then the limit:

Javg = lim
N→∞

1

N

(
xT
0P0x0 +

N∑
t=1

tr(PtΣw)

)
= tr(PΣw)

Where P := limt→∞ Pt is the solution to the Discrete Algebraic Riccati Equation (DARE) we found
for the deterministic LQR problem.

Based on what we just derived, we conclude that there is a fundamental equivalence between the
deterministic and stochastic versions of the LQR problem. Specifically, the two following quantities
are the same:

1. The expected infinite-horizon cost of a deterministic LQR problem (no process noise), where
the initial state is x0 ∼ N (0,Σ).

2. The average cost of a stochastic LQR problem where the process noise is wt ∼ N (0,Σ).

3 Evaluating a suboptimal policy

If instead of using the optimal infinite-horizon LQR policy ut = Kxt, we used some other policy
ut = K̂xt, we can calculate the cost it would incur by substituting directly into the formula for the
standard cost so that we can find the corresponding cost-to-go matrix P̂

J =

∞∑
t=0

(xT
t Qxt + uT

t Rut) =

∞∑
t=0

xT
t (Q+ K̂TRK̂)xt

Now use the fact that xt+1 = (A+BK̂)xt so xt = (A+BK)tx0 and we get:

J =
∞∑
t=0

xT
0 (A

T + K̂TBT)t(Q+ K̂TRK̂)(A+BK̂)tx0 = xT
0 P̂ x0

The matrix P̂ satisfies the Lyapunov equation:

(A+BK̂)TP̂ (A+BK̂)− P̂ + (Q+ K̂TRK̂) = 0

So to find the cost for this suboptimal K̂, we solve the Lyapunov equation above for P̂ , and then
our cost is xT

0 P̂ x0. Note that (A+BK̂) must be stable, otherwise the cost will be infinite.
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4 Controllability

Controllability means you can reach any state from any other state. But, it doesn’t mean every
state is easy to reach. In this section, we are going to quantify the notion of how reachable different
states are, and how much can you reach with a given input budget. Assume a system:

xt+1 = Axt +But (5)

Suppose x0 = 0, and we want to see what xt are reachable with a fixed budget of energy
∞∑
t=0

∥ut∥2 ≤ α2 (6)

The state xt can be expressed in terms of the inputs u0, . . . , ut−1 as:

xt = Atx0 +At−1Bu0 +At−2Bu1 + · · ·+But−1

=
[
At−1B · · · AB B

]︸ ︷︷ ︸
Ct


u0
u1
...

ut−1

 (7)

where we defined Ct to be the controllability matrix. As we can see, a state xt is reachable if
xt ∈ range(Ct). Moreover, if rank(Ct) = n, then all states are reachable. In general, we have
range(C0) ⊆ range(C1) ⊆ · · · ⊆ range(Cn) = range(Cn+1) = . . . . This follows from the Cayley–
Hamilton theorem, since An is a linear combination of {I, A, . . . , An−1}.

If we have a limited energy budget, say ∥u∥ ≤ α, then we can ask what x are reachable. This is
the set {Cu | ∥u∥ ≤ α}. As seen in Lecture 7, this set is an ellipsoid. We can find this ellipsoid by
taking the SVD of Ct:

Ct = UΣV T

The easiest direction to reach is u1 (first left singular vector), and this requires picking u = v1 (first
right singular vector). Likewise, the most difficult direction to reach is un, achieved by picking
u = vn. As t increases, the ellipsoid of reachable states will grow. But what happens as t → ∞? It
turns out that the ellipsoid converges to a limiting ellipsoid, which tells us how far we could reach
if we had an infinite amount of time.

We would like to find this limiting ellipsoid, but it requires taking the SVD of a matrix with infinitely
many columns! Remember that the singular values of Ct are the square roots of the eigenvalues of
P = CtCT

t , which is a fixed-size n × n matrix (for any t). So let’s see if we can find this limiting
matrix. Observe that:

P = lim
t→∞

CtCT
t = BBT +ABBTAT +A2BBT(AT)2 + · · ·

If A is Schur-stable, this sum will converge, and P satisfies the Lyapunov equation

APAT − P +BBT = 0

P is called the controllability Gramian. It turns out when A is Schur-Stable, P ≻ 0 if and
only if (A,B) is controllable (see supplementary notes on Lyapunov equations for a proof). The
eigenvectors of the controllability Gramian are the ui vectors (principal directions).
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5 Observability

In a manner analogous to our study of controllability, we will now study observability. When using
measurements to estimate a state, some measurements can be more informative (our estimation
error will be less sensitive to error in the measurements). Here, we use the system:

xt+1 = Axt and yt = Cxt

We observe the measurements y0, . . . , yt−1 and our task is to estimate the initial state x0. We
assume our measurements have some fixed amount of uncertainty

∞∑
t=0

∥yt∥2 ≤ α2

The initial state x0 is related to the measurements y0, . . . , yt−1 via:
y0
y1
...

yt−1

 =


C
CA
...

CAt−1


︸ ︷︷ ︸

Ot

x0

where we defined Ot to be the observability matrix. If rank(Ot) = n, then x0 can be perfectly
determined from measurements. In general, we have null(O0) ⊇ range(O1) ⊇ · · · ⊇ null(On) =
null(On+1) = . . . . This follows from the Cayley–Hamilton theorem, like the controllability case.

We can ask what the uncertainty set would be for x0 given the measurements lie in ball ∥y∥ ≤ α.
This is the set {x | ∥Otx∥ ≤ α}. As seen in Lecture 7, this set is an ellipsoid. We can find it by
taking the SVD of Ot:

Ot = UΣV T

The easiest direction to estimate is v1 (which corresponds to measurements aligned with u1), since
this is the direction where a fixed change in y causes the smallest possible change in x0 (the
amplification from x0 to y is as large as possible). So a measurement in the direction v1 will
yield the most certainty in our estimate of x0.

As t → ∞, we have a limiting ellipsoid, and we can find it by looking at the eigenvalues of Q = OT
t Ot,

which is an n× n matrix. Observe that:

Q = lim
t→∞

OT
t Ot = CTC +ATCTCA+ (AT)2CTCA2 + · · ·

If A is Schur-stable, this sum will converge, and Q satisfies the Lyapunov equation

ATQA−Q+ CTC = 0

Q is called the observability Gramian. It turns out when A is Schur-Stable, Q ≻ 0 if and only if
(A,C) is observable (see supplementary notes on Lyapunov equations for a proof). The eigenvectors
of the observability Gramian are the vi vectors (principal directions).
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6 Spring-mass-damper example

Here, we revisit the spring-mass-damper example from Lectures 11 and 12. We assume a sequence
of forces is applied to the third mass, and we ask which states are easier or harder to reach. Note
that the state here is a vector in R6 (position and velocity for each of the three masses).

Solving the Lyapunov equation to find the controllability Gramian in Matlab, we obtain

>> P = dlyap(A,B*B')
P =

0.3916 0.6781 0.8210 0.0000 -0.0068 -0.0074
0.6781 1.2136 1.4992 0.0068 -0.0000 -0.0141
0.8210 1.4992 1.8935 0.0074 0.0141 0.0000
0.0000 0.0068 0.0074 0.2110 0.2863 0.2859

-0.0068 -0.0000 0.0141 0.2863 0.5009 0.5696
-0.0074 -0.0141 0.0000 0.2859 0.5696 0.7873

We can then find the left singular vectors, which tell us the directions that are easiest (first column)
or hardest (last column) to reach:

>> [U,S,V] = svd(P)
U =

-0.3278 0.0071 0.0311 -0.7022 -0.1796 0.6051
-0.5909 0.0061 -0.0319 -0.3336 -0.0804 -0.7294
-0.7372 -0.0080 0.0183 0.5793 0.1456 0.3153
-0.0028 -0.3276 -0.7167 -0.1547 0.5948 0.0361
-0.0024 -0.5907 -0.3519 0.1706 -0.7057 0.0122
0.0032 -0.7373 0.6002 -0.0837 0.2971 -0.0294

The order are the states is (x1, x2, x3, v1, v2, v3). So the easiest state to reach is when all three
masses move in the same direction and have roughly zero velocity, with each mass moving a bit
more than the next. This makes sense; it corresponds to all springs being equally compressed.

We can solve the associated minimum-norm control problem to find the sequences of inputs that
reach each of these states. See the result in Fig. 1. The final states are normalized so that they have
norm-1, but the minimum input norm required to reach these states varies dramatically.
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Figure 1: Minimum-norm input signal required to reach either the easiest or most
difficult state to reach for the 3-mass spring-mass-damper system.
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